在数学中,对数是对求幂的逆运算,正如除法是乘法的逆运算,反之亦然。这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数。 在简单的情况下,乘数中的对数计数因子。更一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。
如果 ,即a的x次方等于N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作。其中,a叫做对数的底数,N叫做真数,x叫做“以a为底N的对数”。
事实上,当,,则有e(2k+1)πi+1=0,所以ln(-1)的具有周期性的多个值,ln(-1)=(2k+1)πi。这样,任意一个负数的自然对数都具有周期性的多个值。例如:ln(-5)=(2k+1)πi+ln 5。
从对数的发明过程可以看到,社会生产、科学技术的需要是数学发展的主要动力。建立对数与指数之间的联系的过程表明,使用较好的符号体系对于数学的发展是至关重要的。实际上,好的数学符号能够大大地节省人的思维负担。数学家们对数学符号体系的发展与完善作出了长期而艰苦的努力。
凯迪拉克ct6轮胎型号 凯迪拉克ct6轮胎规格(245/45 r19)
08-19